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Introduction

Social media text is noisy and this is aggrevated in the medical
domain [1]. It is plagued by:

® Typos

® Misspellings

® Domain-specific abbreviations

Results

Our normalization pipeline:

® is generalisable across cancer-related forums
¢ mainly targets medical concepts

Lexical normalization of social media text has been addressed by
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Figure 1: Sequential unsupervised preprocessing pipeline.

NAE NAE+P RE RE+P S1 S2
Accuracy 59.6% 59.6% 66.0% 66.0% 23.4% 19.1%

o | | Table 2: Spelling correction algorithm comparison. NAE: normalized
@ 36 abbreviations found in 500 posts form the lexicon absolute edit distance. +P: with first-letter penalty. RE: relative edit
distance. S1: Sarker’s algoritm [2]. S2: S1 without the language model.
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Conclusion

Our pipeline can improve the quality of the text data from
medical forum posts. Future work will explore its impact on text
mining tasks.
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Figure 2: Decision process for spelling detection. RE: Relative Edit
Distance. Correction candidates from CELEX [3] and corpus tokens > freq.
threshold.
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